Reduction in Kv Current Enhances the Temporal Dispersion of the Action Potential in Diabetic Myocytes: Insights From a Novel Repolarization Algorithm

نویسندگان

  • Marianna Meo
  • Olivier Meste
  • Sergio Signore
  • Andrea Sorrentino
  • Antonio Cannata
  • Yu Zhou
  • Alex Matsuda
  • Marco Luciani
  • Ramaswamy Kannappan
  • Polina Goichberg
  • Annarosa Leri
  • Piero Anversa
  • Marcello Rota
چکیده

BACKGROUND Diabetes is associated with prolongation of the QT interval of the electrocardiogram and enhanced dispersion of ventricular repolarization, factors that, together with atherosclerosis and myocardial ischemia, may promote the occurrence of electrical disorders. Thus, we tested the possibility that alterations in transmembrane ionic currents reduce the repolarization reserve of myocytes, leading to action potential (AP) prolongation and enhanced beat-to-beat variability of repolarization. METHODS AND RESULTS Diabetes was induced in mice with streptozotocin (STZ), and effects of hyperglycemia on electrical properties of whole heart and myocytes were studied with respect to an untreated control group (Ctrl) using electrocardiographic recordings in vivo, ex vivo perfused hearts, and single-cell patch-clamp analysis. Additionally, a newly developed algorithm was introduced to obtain detailed information of the impact of high glucose on AP profile. Compared to Ctrl, hyperglycemia in STZ-treated animals was coupled with prolongation of the QT interval, enhanced temporal dispersion of electrical recovery, and susceptibility to ventricular arrhythmias, defects observed, in part, in the Akita mutant mouse model of type I diabetes. AP was prolonged and beat-to-beat variability of repolarization was enhanced in diabetic myocytes, with respect to Ctrl cells. Density of Kv K(+) and L-type Ca(2+) currents were decreased in STZ myocytes, in comparison to cells from normoglycemic mice. Pharmacological reduction of Kv currents in Ctrl cells lengthened AP duration and increased temporal dispersion of repolarization, reiterating features identified in diabetic myocytes. CONCLUSIONS Reductions in the repolarizing K(+) currents may contribute to electrical disturbances of the diabetic heart.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modulation of Ca(2+) release in cardiac myocytes by changes in repolarization rate: role of phase-1 action potential repolarization in excitation-contraction coupling.

The early rate of action potential (AP) repolarization varies in the mammalian heart regionally, during development, and in disease. We used confocal microscopy to assess the effects of changes in repolarization rate on spatially resolved sarcoplasmic reticulum (SR) Ca(2+) release. The kinetics and peak amplitude of Ca(2+) transients were reduced, and the amplitude, frequency, and temporal sync...

متن کامل

Modulation of Ca Release in Cardiac Myocytes by Changes in Repolarization Rate Role of Phase-1 Action Potential Repolarization in Excitation-Contraction Coupling

The early rate of action potential (AP) repolarization varies in the mammalian heart regionally, during development, and in disease. We used confocal microscopy to assess the effects of changes in repolarization rate on spatially resolved sarcoplasmic reticulum (SR) Ca release. The kinetics and peak amplitude of Ca transients were reduced, and the amplitude, frequency, and temporal synchronizat...

متن کامل

Pro-arrhythmogenic effects of CACNA1C G1911R mutation in human ventricular tachycardia: insights from cardiac multi-scale models

Mutations in the CACNA1C gene are associated with ventricular tachycardia (VT). Although the CACNA1C mutations were well identified in patients with cardiac arrhythmias, mechanisms by which cardiac arrhythmias are generated in such genetic mutation conditions remain unclear. In this study, we identified a novel mechanism of VT resulted from enhanced repolarization dispersion which is a key fact...

متن کامل

Application of stochastic phenomenological modelling to cell-to-cell and beat-to-beat electrophysiological variability in cardiac tissue

Variability in the action potential of isolated myocytes and tissue samples is observed in experimental studies. Variability is manifested as both differences in the action potential (AP) morphology between cells (extrinsic variability), and also 'intrinsic' or beat-to-beat variability of repolarization (BVR) in the AP duration of each cell. We studied the relative contributions of experimental...

متن کامل

The Blocking Activity of Different Toxins against Potassium Channels Kv3.4 in RLE Cells

Background: K+ channel toxins are essential tools for the first purifications, analysis of subunit structures and brain localization of voltage-gated K+ (Kv) channels. The effects of a lot of toxins on Kv are not fully known. Methods: Using whole-cell patch clamping technique the action of a series of toxins on Kv3.4 current in rat liver cells with expressed Kv3.4 channels (RLE) cloned cells wa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2016